Commit 656daef4 authored by Tri Dao's avatar Tri Dao
Browse files

Use Cute's local_tile to get gQ, gK, gV

parent 9eb3d099
No related merge requests found
Showing with 51 additions and 54 deletions
+51 -54
......@@ -68,14 +68,16 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
// We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
// Otherwise we might read OOB elements from gK and gV.
if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.o_row_stride, _1{}));
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
Shape<Int<kBlockM>>{}, Stride<_1>{});
Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
+ binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
make_shape(binfo.actual_seqlen_q, params.h, params.d),
make_stride(params.o_row_stride, params.o_head_stride, _1{}));
Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
Tensor mLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr)),
make_shape(params.b, params.h, params.seqlen_q),
make_stride(params.h * params.seqlen_q, params.seqlen_q, _1{}));
Tensor gLSE = local_tile(mLSE(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(m_block));
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
......@@ -108,25 +110,27 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
// that needs masking when we read K and V from global memory. Moreover, iterating in reverse
// might save us 1 register (we just need n_block instead of both n_block and n_block_max).
const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
+ m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
// We move K and V to the last block.
const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
+ (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
+ (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
const index_t row_offset_p = ((bidb * params.h + bidh) * params.seqlen_q_rounded
+ m_block * kBlockM) * params.seqlen_k_rounded + (n_block_max - 1) * kBlockN;
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.q_row_stride, _1{}));
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.k_row_stride, _1{}));
Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.v_row_stride, _1{}));
Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr)
+ binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)),
make_shape(binfo.actual_seqlen_q, params.h, params.d),
make_stride(params.q_row_stride, params.q_head_stride, _1{}));
Tensor gQ = local_tile(mQ(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
Tensor mK = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.k_ptr)
+ binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)),
make_shape(binfo.actual_seqlen_k, params.h_k, params.d),
make_stride(params.k_row_stride, params.k_head_stride, _1{}));
Tensor gK = local_tile(mK(_, bidh / params.h_h_k_ratio, _), Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_coord(_, 0)); // (kBlockN, kHeadDim, nblocksN)
Tensor mV = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.v_ptr)
+ binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)),
make_shape(binfo.actual_seqlen_k, params.h_k, params.d),
make_stride(params.v_row_stride, params.v_head_stride, _1{}));
Tensor gV = local_tile(mV(_, bidh / params.h_h_k_ratio, _), Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_coord(_, 0)); // (kBlockN, kHeadDim, nblocksN)
Tensor gP = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.p_ptr) + row_offset_p),
Shape<Int<kBlockM>, Int<kBlockN>>{},
make_stride(params.seqlen_k_rounded, _1{}));
......@@ -145,9 +149,9 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K)
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K, nblocksN)
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K)
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K, nblocksN)
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
typename Kernel_traits::TiledMma tiled_mma;
......@@ -240,7 +244,7 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
int n_block = n_block_max - 1;
// We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block), tKsK, tKVcKV, tKVpKV,
binfo.actual_seqlen_k - n_block * kBlockN);
cute::cp_async_fence();
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
......@@ -281,12 +285,11 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
// Advance gV
if (masking_step > 0) {
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV);
} else {
// Clear the smem tiles to account for predicated off loads
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
);
}
cute::cp_async_fence();
......@@ -304,9 +307,7 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
flash::cp_async_wait<0>();
__syncthreads();
if (n_block > n_block_min) {
// Advance gK
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block - 1), tKsK, tKVcKV, tKVpKV);
// This cp_async_fence needs to be in the if block, otherwise the synchronization
// isn't right and we get race conditions.
cute::cp_async_fence();
......@@ -354,9 +355,7 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
clear(acc_s);
flash::cp_async_wait<0>();
__syncthreads();
// Advance gV
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV);
cute::cp_async_fence();
flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
......@@ -367,9 +366,7 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
flash::cp_async_wait<0>();
__syncthreads();
if (n_block > n_block_min) {
// Advance gK
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block - 1), tKsK, tKVcKV, tKVpKV);
// This cp_async_fence needs to be in the if block, otherwise the synchronization
// isn't right and we get race conditions.
cute::cp_async_fence();
......@@ -421,14 +418,16 @@ inline __device__ void compute_attn_1rowblock(const Params &params, const int bi
cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.o_row_stride, _1{}));
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
Shape<Int<kBlockM>>{}, Stride<_1>{});
Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
+ binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
make_shape(binfo.actual_seqlen_q, params.h, params.d),
make_stride(params.o_row_stride, params.o_head_stride, _1{}));
Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
Tensor mLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr)),
make_shape(params.b, params.h, params.seqlen_q),
make_stride(params.h * params.seqlen_q, params.seqlen_q, _1{}));
Tensor gLSE = local_tile(mLSE(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(m_block));
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
......@@ -555,8 +554,6 @@ inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, cons
// that needs masking when we read K and V from global memory. Moreover, iterating in reverse
// might save us 1 register (we just need n_block instead of both n_block and n_block_max).
const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
+ m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
// We move K and V to the last block.
const int bidb_cache = params.cache_batch_idx == nullptr ? bidb : params.cache_batch_idx[bidb];
const int *block_table = params.block_table == nullptr ? nullptr : params.block_table + bidb * params.block_table_batch_stride;
......@@ -571,9 +568,11 @@ inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, cons
+ (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride
: block_table[block_table_idx] * params.v_batch_stride + block_table_offset * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.q_row_stride, _1{}));
Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr) + binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)),
make_shape(binfo.actual_seqlen_q, params.h, params.d),
make_stride(params.q_row_stride, params.q_head_stride, _1{}));
Tensor gQ = local_tile(mQ(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.k_row_stride, _1{}));
......@@ -1033,8 +1032,6 @@ inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, cons
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
);
// __syncthreads();
// if (cute::thread0()) { print(tOgOaccum); }
}
////////////////////////////////////////////////////////////////////////////////////////////////////
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment